форум осваивающих КОБ

 

Вернуться   Форум осваивающих КОБ > Свободная трибуна > 5й Приоритет: Здоровье, освоение генетически-обусловленного потенциала

Важная информация

Ответ
 
Опции темы Опции просмотра
  #1  
Старый 29.12.2010, 17:03
energy energy вне форума
участник
 
Регистрация: 27.11.2010
Сообщений: 651
energy на пути к лучшему
По умолчанию Фотосинтез и Бета-синтез

Одним из принципиальных отличий клеток растительного происхождения (КРП) от клеток животного происхождения (КЖП) является то, что протоплазма первых состоит главным образом из хлорофилла, а протоплазма вторых – из гемоглобина.

Хлорофилл имеет разную цветность, но в большинстве своем у наземных растений он зеленый. Гемоглобин КЖП чаще всего имеет красный цвет, хотя у спрутов (морских моллюсков) и некоторых зверьков кровь и, естественно, гемоглобин имеет голубой цвет. Такой гемоглобин иногда называют гемоцианином.

Исследования химиков показывают, что хлорофилл и гемоглобин имеют подобные химические структуры. Отличие заключается только в том, что в порфировом ядре хлорофилла находятся фотоэмиссионные элементы таблицы Менделеева, например: магний, цинк, серебро, ртуть, германий, селен, фтор, цезий, стронций. В то время как в порфировых ядрах гемоглобина находятся не фотоэмиссионные, а термоэмиссионные элементы таблицы Менделеева, а именно: железо, никель, кобальт, медь, золото и др.

Таким образом, хлорофилл КРП отличается от гемоглобина КЖП только тем, что в порфировых ядрах хлорофилла находится магний, а в тех же ядрах гемоглобина – двухвалентное железо. Поэтому хлорофилл зеленый, а гемоглобин красный.

Цветность хлорофилла обусловлена фотоэлектронным эффектом магния, который от действия фотонов – зелено-красных цветов спектра света – может освободиться от своих свободных электронов.

Гемоглобин имеет красный цвет только за счет того, что при бомбардировке электронами атомов железа от гемоглобина будут идти излучения красного света.

Огромное сходство хлорофилла и гемоглобина делает их взаимозаменяемыми, так как и магний, и железо двухвалентны. Поэтому из хлорофилла растений легко можно получить гемоглобин и наоборот – гемоглобин легко превратить в хлорофилл.

Этот важный факт автор предлагает использовать в гематологии при производстве искусственной крови из соков растений, что позволяет практически полностью избавиться от донорской крови, хотя все же ее легче получить из крови животных.

Для понимания явления фотосинтеза необходимо вспомнить свойства фотоэффекта в веществах, сущность которого проявляется в следующем.

Если пучок света направить на металлическую поверхность, то фотоны света будут вырывать из металла электроны. По закону Кулона атом, потерявший электрон, будет иметь положительный заряд, который до этого был компенсирован утраченным электроном.

Этот экспериментальный факт удостоверяет, что фотоны света могут находиться во взаимодействии с электронами вещества, если энергия выхода электронов соизмерима с энергией фотонов.

Понимая, что фотон представляет собой не что иное, как волновую дельта-функцию (рис. 56), можно утверждать, что взаимодействие фотона с электроном возможно только в том случае, если электрон будет определен массой. Чем больше масса электрона, тем на более низкой частоте он будет реагировать с фотоном.



Рис. 56. Временная функция фотона

Железо содержит более крупные электроны с массой, иногда приближающейся к утроенной массе электронов. Поэтому, чтобы вырвать из атома железа тяжелые электроны, необходимо иметь фотоны низкой частоты большой мощности. Принципиально фотоэлектронный эффект в железе может быть осуществлен только инфракрасными лучами. Для атомов, содержащих электроны меньшей массы, действующими фотонами будут фотоны более высокой частоты оптического диапазона волн.

Взаимосвязь фотона с электроном существует всегда. Однако в явлении фотоэффекта эта взаимосвязь имеет крайне неустойчивый характер. Действительно, от сильного фотона электрон может полностью покинуть атом, а может и остаться в нем. Если же атом бомбардируется электронами, то всякое торможение электрона неминуемо приведет к излучению фотона. Поскольку электрон является частицей, а фотон – электромагнитной волной, то, согласно принципу необратимости, фотонно-электронное преобразование будет несимметричным. Другими словами, всякое замедление электрона приведет к излучению фотона, но не всякий фотон будет способен вырвать электрон из атома. Этим и объясняется, что фотоэлектронная эмиссия наблюдается не у всех веществ таблицы Менделеева.

Из того небольшого списка элементов, обладающих фотоэффектом, природа, главным образом, определилась на магнии, который и составил основу всего растительного мира земли.

Точно так же существует мало элементов в таблице Менделеева для осуществления бета-синтеза. Поэтому железо в гемоглобине является совершенно не случайным, как не случайным оказалось и то, что оно там бывает только двухвалентным.

Железо и магний совместно позволили с помощью фото- и бета-синтезов создать на земле биомассу растений и животных.

Удивительным свойством фотосинтеза является воспроизводство биомассы растений фактически на трех-четырех веществах таблицы Д. И. Менделеева. В частности, все соединительные ткани состоят, главным образом, из углерода и воды:

H H H H H
/ / / / /
– C – C – C – C – ... – C – = n(CH2O) (10)
\ \ \ \ \
OH OH OH OH OH


Рис. 57. Структурная схема соединительных тканей

Здесь при фотосинтезе магний после потери электрона становится не элементом химической реакции, а только катализатором. Причем катализатором не химической ре*акции, а катализатором растворения углерода в воде с по*следующим образованием кристаллов, изображенных на рисунке (рис. 57). Здесь соединительные ткани образуются за счет взаимодействия углекислого газа и воды. Естест*венно, избыточный кислород из реакций освобождается:

n H2O + n CO2 = n (CH2O) + n O2, (11)

так как вода H2O в присутствии магниевого катализатора обладает более сильными окислительными свойствами для углерода, чем кислород. Поэтому при фотосинтезе кисло*род будет освобождаться, а углерод будет как бы раство*ряться в пропорции (1:1), образуя соединения вида n(CH2O).

Любопытно заметить, что соединение вида n(CH2O) на*ходится как бы в инверсно населенной системе, т. е. в ре*жиме накопления энергии. Это значит, что при растворе*нии углерода в воде с образованием соответствующих кри*сталлов (рис. 57) образуется высокоэффективное горючее.

Такое вещество (рис. 57) не является нейтральным, так как начало и конец цепи n(CH2O) способны присоединить к себе еще по одной молекуле либо замкнуться в кольцо, либо идти на образование порфировых ядер, хлорофилла, алкалоидов, сахаров, белков, жиров.

При бета-синтезе идет подобный процесс. Однако при нем биомасса будет более подкисленной из-за сильных окислительных процессов.

Чтобы понять бета-синтез, вспомним из курса физики эффект термоэлектронной эмиссии. Суть эффекта заключается в том, что при нагревании веществ они не только излучают фотоны, но и эмиссируют электроны.

Замечательным свойством термоэлектронной эмиссии является то, что вещество, теряя электроны, не приобретает зарядности, как это требует закон Кулона.

Электронная эмиссия совершается без участия полей. Если бы при термоэлектронной эмиссии нагретые тела заряжались, то такие светила, как Солнце, накапливали бы положительные заряды астрономической величины. В действительности же ничего подобного мы не наблюдаем.

Явление термоэлектронной эмиссии человеком используется с давних пор. Так, первые электронные лампы были основаны именно на использовании электронной эмиссии для усиления слабых электрических полей и токов. Современные электронно-лучевые трубки в телевизорах также используют термоэлектронную эмиссию для образования электронного луча. Аналогично изготовляются и электронные пушки в электронно-сварочных аппаратах. Во всех случаях используется свойство нагретого тела излучать свободные электроны без образования зарядов. Однако свойство эмитировать электроны нагретого тела не вечно. Поэтому очень скоро наступает такой момент, когда эмиссионная способность вещества резко ослабевает, и вещество при нагревании больше не желает излучать электроны.

Эффект термоэлектронной эмиссии не находит объяснений в современной физике. Действительно, если опираться на современные теории атомной физики, то объяснить термоэлектронную эмиссию невозможно вследствие отсутствия возникновения положительных зарядов.

Поскольку экспериментальный факт термоэлектронной эмиссии идет вразрез с известными толкованиями в современной физике, приведем свое объяснение этому явлению.

Если обратить внимание на атом гелия (его атомный вес равен 4,0026 и он имеет согласно старым представлениям всего два электрона), то он образован из двух атомов водорода (дейтерия D).

Свойство парности утверждает, что все вещества не могут долго находиться в атомарном виде. Поэтому водород в данном случае находится в виде молекулы D22, у которой содержится два нейтрона, два протона и два электрона.

Если молекулу водорода (протия) нагревать под большим давлением при высокой температуре, то можно будет наблюдать термоэлектронную эмиссию, при которой молекула водорода будет терять электроны. Зарядность молекулы при этом может остаться неизменной только в том случае, если один из нейтронов молекулы превратится в мезон, т. е. в частицу с атомным весом, равным нейтрону, но с зарядом, равным электрону. Другими словами, при выше отмеченных условиях молекула водорода превращается в атом дейтерия по схеме:

H22 → D1 → ē (электроны). (12)

Атомы дейтерия по свойству парности соединяются в молекулу дейтерия D2, у которой будет содержаться четыре нуклона и два электрона.

Если молекулу дейтерия также нагревать под давлением при высокой температуре, то молекула дейтерия будет превращаться в атом гелия:

D2 → Не2 → hn (фотоны). (13)

Таким образом, легкий водород будет превращаться в гелий и в нейтроны с выделением электронов и лучистой энергии.

Понимая процесс термоатомного синтеза, в котором молекулярный водород преобразуется в гелий с выделением электронов, можно обнаружить, что всякая термоэлектронная эмиссия в веществах имеет прямое отношение к термоатомному синтезу.

Поэтому эмиссионные свойства веществ характеризуются неоконченностью термоатомного синтеза водорода в гелий, который всегда имеется в виде примесей во всех веществах. Кроме того, эмиссия электронов совершается при распаде нейтронов на протон и электрон, так как нейтроны являются также водородными атомами, плотно упакованными.

Термоатомиый синтез принципиально возможен и при преобразовании тяжелых атомов, так, если атом ртути нагревать под высоким давлением, то от него будет отрываться один электрон, и ртуть будет превращаться в золото.

Здесь золото (Au79197) оказывается стабильнее ртути (Hg80200).

Термоэлектронной эмиссией особенно обладают вещества, полученные на основе гелия. К таковым, в частности, относятся бериллий, который состоит из двух атомов гелия (Be49,01218), углерод, состоящий из трех атомов гелия (C612,011), кислород, состоящий из четырех атомов гелия и т. д.

Многие элементы таблицы Д. И. Менделеева представляют собой не что иное, как комбинацию атомов гелия. Зная, что гелий является инертным в химическом отношении веществом, можно предположить, что и все другие производные от него вещества должны быть также химически инертными. В действительности, химической инертностью, кроме гелия, обладают только неон, аргон, криптон, ксенон, радон, а также, при определенных условиях, железо, платина, вольфрам, титан и некоторые другие вещества.

Углерод и кислород тоже должны быть химически инертными веществами. Собственно, инертность алмазов и углеродных (графитовых) залежей доказана временем. Так, в залежах кристаллы алмаза тысячелетиями находятся без каких-либо изменений.

Кислород также является инертным веществом. А тот факт, что кислород соединяется с водородом, указывает не на химическую активность кислорода, а на то, что кислород стремится быть неоном, как более стабильной структурой. Но для этого кислороду не хватает двух электронов и четырех нуклонов. Поэтому тяжелая вода более стабильна по сравнению с обычной водой, так как два атома дейтерия по структуре полей расположены ближе к гелию, чем два атома легкого водорода, а с другой стороны, два атома дейтерия и по атомному строению очень близки к гелию.

Таким образом, мною выдвигается предположение, что все атомы с четными номерами химически инертны, а все те химические соединения, которые имеются в химических каталогах, надо рассматривать как устойчивые геометрические формы, аналогичные инертным веществам восьмой колонки таблицы Д. И. Менделеева. Действительно, например соляная кислота HCl по числу электронов и нейтронов близка к аргону, плавиковая кислота HF близка к неону, серная кислота H2SO4 близка к ксенону, а точнее, к олову, а азотная — к германию. Это предположение подтверждается также свойствами подобия, которые проявляются в растворимости подобных веществ друг в друге. Термоэлектронная эмиссия тем более подтверждает высказанное предположение о нехимической природе всех органических и множества неорганических веществ.

Термоэлектронная эмиссия при постоянной температуре ослабевает. Однако ее можно вновь восстановить, если резко повысить температуру вещества, а потом вновь вернуть ее в исходное состояние. Такой скачкообразный бросок тепловой энергии вновь принуждает нейтроны атомов превращаться в протоны или в мезоны, обладающие зарядом электронов, и за счет этого освобождаться от электронов без накопления электрических зарядов.

Свойство термоэлектронной эмиссии, как мною было установлено, обратимо, как обратимы эффекты Пельтье и Зеебека.

При термоэлектронной эмиссии мы обнаруживаем излучение электронов из веществ от нагрева, при котором зарядность, как это бывает при фотоэффекте, отсутствует.

Однако если термоэлектронно-эмиссирующее вещество облучать потоком электронов, то можно обнаружить в веществе атомы тяжелого и легкого водорода.

Другими словами, термоэлектронно-эмиссирующий эффект является комплексом двух эффектов:

1) эффект термоатомного синтеза (ЭТС);

2) эффект электронного разложения (ЭЭР).

При этом тепловые лучи превращают легкий водород в дейтерий, гелий, бериллий, углерод, кислород и т. д., а поток электронов, напротив, расщепляет все сложные вещества на простые и, главным образом, на тяжелый и легкий водород.

Вот именно эти два эффекта термоэлектронной эмиссии, которые мною были обнаружены, и являются основополагающими в процессах бета-синтеза.

Обращая внимание на ЭЭР, мы можем напомнить, что чем проще вещество, тем в нем более четко обнаруживаются эффекты ЭТС и ЭЭР. Действительно, в атомной физике известно, что наилучшим поглотителем электронов являются тяжелый водород дейтерий (D) или на его основе тяжелая вода (D2O), а также углерод (С2), кислород (О2) и другие вещества. Поэтому графитовые стержни из углерода и тяжелая вода уже в начале развития атомной энергетики использовались для замедления атомных цепных процессов.

С другой стороны, при изучении многих химических реакций мною было замечено, что в слабом потоке электронов химические реакции идут значительно быстрее. Создается впечатление, что катализ, т. е. ускорение химической реакции, обусловлен не каким-то физическим свойством катализаторов, а обычным их свойством излучать электроны под действием тепловой энергии. Собственно, хорошими катализаторами являются такие вещества, которые обладают значительными ЭТС и ЭЭР.

Если защитить катализаторы от реагентов тонкой пленкой, свободно пропускающей электроны, то лучшими катализаторами будут те вещества, которые наиболее сильно проявляют ЭТС. А такие вещества, как платина, могут обходиться и без самостоятельной защиты, так как они химически инертны. Наоборот, те вещества, которые ярко реализуют ЭЭР, существенно замедляют химические реакции. Их в химии и физике называют ингибиторами. К ним, в частности, относится, например лигнин.

Зная о том, что ингибиторы, как правило, состоят из углерода, водорода и кислорода (лигнин тому пример), можно задать вопрос: «Почему ингибиторы так жадно поглощают свободные в пространстве электроны?»

Ответом может быть следующее утверждение: «Все ингибиторы, как и вся органическая жизнь, для поддержания своей жизнедеятельности нуждаются в свободных электронах точно так же, как и в свободных фотонах».

В первом случае необходимость электронов обусловлена законами бета-синтеза, а во втором случае — законами фотосинтеза.

Если бы потерянные электроны растений при фотосинтезе не восполнялись за счет термоэлектронной эмиссии, то растения находились бы под действием гигантских электрических полей. В реальных же условиях растения находятся под действием электрических полей (но эти поля незначительны), которые собственно иногда и вызывают обычные грозовые летние разряды.

Отсюда понятно, что фотосинтез в растениях невозможен без действия ЭТС. Фотосинтез и бета-синтез являются главнейшими явлениями в синтезе биомассы. Главным, конечно, является белок. Но синтез белка осуществляется по законам негативной химии, т. е. по законам нейтрализации с потерей энергии и воды. Отсюда становится понятно, что энтропийность при реакции нейтрализации делала бы невозможным продуцирование белков без явлений фото- и бета-синтеза. Действительно, реакция нейтрализации идет с потерей энергии в виде фотонов и электронов, а фото- и бета-синтеза продуцируют их.
Ответить с цитированием
  #2  
Старый 29.12.2010, 17:04
energy energy вне форума
участник
 
Регистрация: 27.11.2010
Сообщений: 651
energy на пути к лучшему
По умолчанию Ответ: Фотосинтез и Бета-синтез

Сравнительные данные фото- и бета-синтеза
Фотосинтез происходит за счет фотоэффекта, а бета-синтез — за счет ЭТС и ЭЭР. Хотя ко всем углеродным полимерам, как растительным, так и животным, ЭТС и ЭЭР имеют прямое отношение. Другими словами, ЭТС и ЭЭР являются общими как для растительного органического вещества, состоящего из углерода, кислорода и водорода (например, лигнин, целлюлоза, глюкозиды, спирты, ацетоны), так и для животного органического вещества (например, коллаген, гликогены и тому подобное).

Явление фотосинтеза присуще тем органическим веществам, в соединении которых имеются фотоактивные вещества. К таковым, в частности, относятся: магний, цинк, селен, германий, стронций, ртуть, цезий.

Явления бета-синтеза реализуются с помощью других микроэлементов, которые способны излучать электроны не под действием света, а под действием теплового движения молекул, т. е. за счет термоэлектронной эмиссии, а точнее, за счет термоатомного синтеза, т. е. превращения водорода в гелий.

Фотосинтез совершается, например в хлорофилле растительной клетки, а бета-синтез — в гемоглобине животной клетки.

Продуктами фотосинтеза (с учетом действия ЭТС и ЭЭР) являются: целлюлоза, лигнин, белки, крахмал, углеводы, жиры (растительные масла), глюкозиды, сапонины, дубильные вещества, горечи, алкалоиды (щелочепо-добные азотсодержащие вещества) и т. п..

Продуктами бета-синтеза являются: углеводы, напоминающие целлюлозу (хитин), коллаген (цементирующее вещество, аналогичное лигнину), животные белки (аналогичные белкам растительным, но отличающиеся от них, как белок куриного яйца отличается от белка муки зерна), сахар животный (мед, молочная сыворотка), глюкогены, гликогены, ферменты, гормоны, аминокислоты (кислото-подобные азотсодержащие вещества, аналогичные алкалоидам), пепсины, пептиды и т. п.

В процессах фотосинтеза идет усвоение углекислого газа и водорода из воды, а кислород при этом частично высвобождается.

В процессах же бета-синтеза можно наблюдать главным образом эффект ЭЭР, при котором избыточный атомарный водород, образующийся при этом, отнимает кислород из газовой воздушной смеси или воды и выбрасывает углекислый газ.

Зная о том, что в порфировом ядре гемоглобина находится двухвалентное железо, можно утверждать, что в нем за счет эффекта ЭЭР может расщепляться от действия внешних электронов само железо по формуле

Fe = F2O = FCl, (14)

Fe2656 = 2F9 + O8 = 3O8 + 2H1 = 4C + 2H (15)

или:

Fe2656 + O2 + 2e- = F2O3 = H2O + O4 = H2O2 + O3 (16)

Другими словами, один атом железа под действием двух электронов отрывается от соединения в порфировом ядре и в принципе, может расщепляться на атомы углерода, на атомы кислорода и на атомы водорода. Атомы углерода и кислорода образуют углекислый газ CO2, а атомарный водород, соединяясь с кислородом окружающей среды, образует воду.

Вся эта реакция расщепления железа или его изостера F2O или FCl идет с выделением большого количества тепловой энергии. Благодаря этой энергии, организм сможет обогреваться.

Таким образом, высказанное предположение о термоатомном расщеплении железа в процессе бета-синтеза является, на первый взгляд, невероятным. Тем не менее, в этом нет ничего невероятного. Со временем выяснится, что главным энергетическим топливом в клетках животного происхождения является не кислород, а железо!!! А точнее, ковалентные соединения, соответствующие формулам: Fe = F2O или Fe = ArO, или Fe = FCl. При этом значительное тепловыделение происходит при реакциях нейтрализации и синтезе белков.

Аналогичная атомная реакция идет и при превращении других элементов. Так, если в додекаэдральных кластерах типа C20H20 будет содержаться азот N2, то под действием тепловых нейтронов и электронов можно обнаружить реакцию вида:

H
' (
N7 + N7 = C6 + O8 + W (17)


Реакции в формулах 15,16 и 17 совершаются не с обычной, а тяжелой водой, в которой необходимо вместо обычного водорода писать дейтерий, тритий и т. п., так чтобы атомный вес железа или азота совпадал с атомным весом реагирующих веществ.

Аналогичные реакции термоатомного разложения можно записать и для гемоглобина, у которого в порфировых ядрах находится не железо (или его изостер F2O или FCl), а медь (у пауков, спрутов), никель (в лимфаплазме), кобальт (в молочных железах), йод (в щитовидных железах) и т. д.

Особенностью бета-синтеза является то, что углерод для воспроизводства биомассы животного происхождения берется не из атмосферы, а непосредственно после возникновения в реакции термоатомного разложения. Естественно, если речь идет о молекулярном бета-синтезе. Если рассматривать клеточный уровень, то материал для синтеза биомассы частично используется из биомассы окружающей среды, как растительной, так и животной.

Подводя итог краткому обсуждению фото- и бета-синтеза, можно заключить, что эти два явления природы полностью подчинены принципу двойственности.

Благодаря явлениям фото- и бета-синтеза солнечная энергия, представленная в виде двух потоков (фотонов и электронов), преобразуется в другой вид материи (в биомассу). Причем сама по себе биомасса не является химическим продуктом, так как она воспроизводится (хоть и на расстоянии) в термоатомных реакциях синтеза (фотосинтез) и термоатомных реакциях разложения (бета-синтез). Другими словами, жизнь растений и животных — есть продукт термоатомных реакций звезд. Причем, несмотря на различие фото- и бета-синтеза, эти два явления не могут существовать один без другого, как мир растений не может существовать без мира животных. И мир животных не может существовать без мира растений.

С другой стороны, явление жизни является могучим явлением природы. Поскольку фото- и бета-синтез совершаются в любых условиях с образованием воды, кислорода, углекислого газа и других элементов, то жизнь на Земле не является исключением. Наоборот, она в принципе распространяется повсюду вокруг всякой светяа;ей звезды.

Два свойства термоатомного синтеза, а также фото- и бета-синтез позволяют осуществить в природе только два типа простейших клеточных существ:

1) клетки растительного происхождения (КРП);

2) клетки животного происхождения (КЖП).

Из клеток растительного происхождения создан мир растений, а из клеток КЖП — мир животных, птиц, рыб, рептилий, червей, насекомых.

Другими словами, жизнь возможна только в виде флоры и фауны.

Третьего вида клеточной жизни быть в принципе не может.

Если подчеркнутая мысль есть истина, то можно дать ответы на многие вопросы.

Например, к каким клеткам можно отнести болезнетворные микроорганизмы и раковые клетки?

Ответ может быть совершенно определенным: их можно отнести либо к КРП, либо к КЖП, так как третьей разновидности клеток не существует.

Автор долгое время изучал среду существования болезнетворных микроорганизмов и в конце концов пришел к выводу, что все они делятся также на две разновидности — КРП и КЖП.

Фото- и бета-синтез были многократно экспериментально подтверждены многими исследователями. Так, французский ученый Кервран еще в 1962 г. указывал на течение атомных превращений в растительных и животных клетках. В частности, он указывал, что молекулярный азот в клетках преобразуется в окись углерода (СО). Окись натрия по Керврану преобразуется в организмах в калий, а калий преобразуется в кальций. Кервраном также показано, что окись магния также преобразуется в кальций. В шеститомном труде Керврана приводятся многие схемы преобразования атомов, но научной общественностью Франции идеи Керврана не были поддержаны, и о них не было известно практически никому.

Фото- и бета-синтез, как теоретически, так и практически, являются дальнейшим подтверждением идей Керврана, хотя имеют и свое самостоятельное значение. Для понимания идей атомных превращений на энергиях порядка единиц электрон-вольт моей семьей (мной, моей женой Нелли Андреевной и сыном Максимом Борисовичем) разработана теория, названная нами «Химия второго поколения на атомном уровне», которая дает ясное представление об атомных превращениях на малых энергиях.

Сущность этой теории заключается в том, что носителем химизма в реакциях являются ионы, связанные, как правило, не одним электроном или позитроном (протоном), а большой группой заряженных элементов. Исходным в химии второго поколения является вода вида двуокиси лития (Li2O). Действительно, при образовании звезд газообразный водород преобразуется в гелий, литий, бериллий и во все другие элементы. Наиболее вероятным соединением в этом процессе является двуокись лития (Li2O), которая под действием гравитационных сил превращается в кремний по схеме:

Li23O8 → Si14. (18)

Другими словами, кремний, называемый иногда полупроводником, оказывается ничем иным, как литиевой водой, т. е. спрессованной двуокисью лития.

Если это наше предположение верно (оно позже нами было доказано), то кремний должен, как и обычная вода, диссоциировать, т. е. под действием энергетических возбуждений распадаться на ионы, так оно и оказалось: кремний действительно под действием электрических полей распадается на два иона: 1) положительный ион лития и 2) отрицательный ион гидроксильной группы — OLi. Если энергия диссоциации обычной протиевой воды составляет единицы электрон-вольт, то кремний диссоциирует в диапазоне энергий килоэлектрон-вольт.

Возможность кремния диссоциировать на два иона (лития и гидроксильной группы OLi) открывает большие возможности образования как кислот, так и щелочей, а вместе с этим — всю могучую химию на ядерном уровне. Действительно, если мы обратим внимание, например на плавиковую кислоту (HF ), то в случае с ионом лития плавиковая кислота будет иметь вид LiF. Теперь, если представить, что соединения фторида лития (LiF) находились под большими гравитационными нагрузками образуемой звезды, то фторид лития превратится в магний по схеме:

Li3 + F9 = Mg12. (19)

Аналогично соляная кислота, у которой вместо водорода присутствует литий, в недрах звезды превратится в кальций по схеме:

Li3 + Cl17 = Ca20. (20)

Соответственно можно представить в виде кислот или щелочей и другие элементы периодического закона Менделеева. Например, калиевая щелочь обычно представляется в виде KOLi. В нашем случае, поскольку гидроксильная группа представлена в виде OLi, соединение KOLi превратится в цинк по схеме:

K19 + О8 + Li3 = Zn30. (21)

Так же можно показать и щелочи на других щелочных элементах. Когда осмысливается сущность элементов, как соединений других элементов, то легко станет представимой и реакция нейтрализации. Возьмем, например, магний как плавиковую кислоту, а на основе цинка, т. е. калиевой щелочи, проведем реакцию нейтрализации. Для этого мы вначале должны взять литиевую воду, т. е. кремний, расплавить его (температура плавления кремния равна 1416°С), затем ввести в него магний. Все это надо сделать в вакууме, чтобы магний не воспламенился, Когда раствор плавиковой кислоты, т. е. магния, будет получен, в него надо ввести щелочь, т. е. цинк, также растворенный в воде, т. е. в расплавленном кремнии. Если вода, т. е. кремний, будет достаточно ионизирована, то реакция нейтрализации между магнием и цинком пойдет по схеме

Mg12 + Zn30 = LiF + KOLi = Li2O + KF = Si14 + Ni28 + W. (22)

Как замечаем, реакция нейтрализации идете образованием литиевой воды, т. е. кремния, и соли фторида калия, т. е. никеля. При этом образуется около 2,5 мегаэлектронвольт энергии, выделяющейся в виде фотонов. Цинк с железом может вообще нейтрализоваться до литиевой воды, т. е. до кремния.

Fe26 + Zn30 = C3O + СО3 = С4О4 = 4(СО) = 4Si14. (22*)

Эту реакцию можно отобразить и так:

Fe + Zn = SiC2 + SiO2 = Si2 (CO) 2 = Si2 (Si2). (22**)

Таким образом, явление фотосинтеза и бета-синтеза надо рассматривать с позиции химии второго поколения на атомном уровне.
Ответить с цитированием
Ответ

Опции темы
Опции просмотра

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.
Быстрый переход


Часовой пояс GMT +4, время: 16:19.



Работает на vBulletin® версия 3.7.3.
Copyright ©2000 - 2019, Jelsoft Enterprises Ltd.
Перевод: zCarot