Опять 25 (выключаете зомбоящик и садитесь за книги)
http://vuzer.info/load/interesnoe/bi..._i/13-1-0-5661
Вернадский, читайте
В природе существует баланс между кислородом и углекислым газом.
Фотосинтез идет при поглощении ВОДОРОДА, высвобождая кислород. При бета-синтезе (идет в животном организме) поглощается кислород.
Единственным источником всего живого на земле, является солнце.
Справка:
Одним из принципиальных отличий клеток растительного происхождения (КРП) от клеток животного происхождения (КЖП) является то, что протоплазма первых состоит главным образом из хлорофилла, а протоплазма вторых – из гемоглобина.
Хлорофилл имеет разную цветность, но в большинстве своем у наземных растений он зеленый. Гемоглобин КЖП чаще всего имеет красный цвет, хотя у спрутов (морских моллюсков) и некоторых зверьков кровь и, естественно, гемоглобин имеет голубой цвет. Такой гемоглобин иногда называют гемоцианином.
Исследования химиков показывают, что хлорофилл и гемоглобин имеют подобные химические структуры. Отличие заключается только в том, что в порфировом ядре хлорофилла находятся фотоэмиссионные элементы таблицы Менделеева, например: магний, цинк, серебро, ртуть, германий, селен, фтор, цезий, стронций. В то время как в порфировых ядрах гемоглобина находятся не фотоэмиссионные, а термоэмиссионные элементы таблицы Менделеева, а именно: железо, никель, кобальт, медь, золото и др.
Таким образом, хлорофилл КРП отличается от гемоглобина КЖП только тем, что в порфировых ядрах хлорофилла находится магний, а в тех же ядрах гемоглобина – двухвалентное железо. Поэтому хлорофилл зеленый, а гемоглобин красный.
Цветность хлорофилла обусловлена фотоэлектронным эффектом магния, который от действия фотонов – зелено-красных цветов спектра света – может освободиться от своих свободных электронов.
Гемоглобин имеет красный цвет только за счет того, что при бомбардировке электронами атомов железа от гемоглобина будут идти излучения красного света.
Огромное сходство хлорофилла и гемоглобина делает их взаимозаменяемыми, так как и магний, и железо двухвалентны. Поэтому из хлорофилла растений легко можно получить гемоглобин и наоборот – гемоглобин легко превратить в хлорофилл.
Этот важный факт автор предлагает использовать в гематологии при производстве искусственной крови из соков растений, что позволяет практически полностью избавиться от донорской крови, хотя все же ее легче получить из крови животных.
Для понимания явления фотосинтеза необходимо вспомнить свойства фотоэффекта в веществах, сущность которого проявляется в следующем.
Если пучок света направить на металлическую поверхность, то фотоны света будут вырывать из металла электроны. По закону Кулона атом, потерявший электрон, будет иметь положительный заряд, который до этого был компенсирован утраченным электроном.
Этот экспериментальный факт удостоверяет, что фотоны света могут находиться во взаимодействии с электронами вещества, если энергия выхода электронов соизмерима с энергией фотонов.
Понимая, что фотон представляет собой не что иное, как волновую дельта-функцию (рис. 56), можно утверждать, что взаимодействие фотона с электроном возможно только в том случае, если электрон будет определен массой. Чем больше масса электрона, тем на более низкой частоте он будет реагировать с фотоном.
Рис. 56. Временная функция фотона
Железо содержит более крупные электроны с массой, иногда приближающейся к утроенной массе электронов. Поэтому, чтобы вырвать из атома железа тяжелые электроны, необходимо иметь фотоны низкой частоты большой мощности. Принципиально фотоэлектронный эффект в железе может быть осуществлен только инфракрасными лучами. Для атомов, содержащих электроны меньшей массы, действующими фотонами будут фотоны более высокой частоты оптического диапазона волн.
Взаимосвязь фотона с электроном существует всегда. Однако в явлении фотоэффекта эта взаимосвязь имеет крайне неустойчивый характер. Действительно, от сильного фотона электрон может полностью покинуть атом, а может и остаться в нем. Если же атом бомбардируется электронами, то всякое торможение электрона неминуемо приведет к излучению фотона. Поскольку электрон является частицей, а фотон – электромагнитной волной, то, согласно принципу необратимости, фотонно-электронное преобразование будет несимметричным. Другими словами, всякое замедление электрона приведет к излучению фотона, но не всякий фотон будет способен вырвать электрон из атома. Этим и объясняется, что фотоэлектронная эмиссия наблюдается не у всех веществ таблицы Менделеева.
Из того небольшого списка элементов, обладающих фотоэффектом, природа, главным образом, определилась на магнии, который и составил основу всего растительного мира земли.
Точно так же существует мало элементов в таблице Менделеева для осуществления бета-синтеза. Поэтому железо в гемоглобине является совершенно не случайным, как не случайным оказалось и то, что оно там бывает только двухвалентным.
Железо и магний совместно позволили с помощью фото- и бета-синтезов создать на земле биомассу растений и животных.
Удивительным свойством фотосинтеза является воспроизводство биомассы растений фактически на трех-четырех веществах таблицы Д. И. Менделеева. В частности, все соединительные ткани состоят, главным образом, из углерода и воды:
H H H H H
/ / / / /
– C – C – C – C – ... – C – = n(CH2O) (10)
\ \ \ \ \
OH OH OH OH OH
Рис. 57. Структурная схема соединительных тканей
Здесь при фотосинтезе магний после потери электрона становится не элементом химической реакции, а только катализатором. Причем катализатором не химической ре¬акции, а катализатором растворения углерода в воде с по¬следующим образованием кристаллов, изображенных на рисунке (рис. 57). Здесь соединительные ткани образуются за счет взаимодействия углекислого газа и воды. Естест¬венно, избыточный кислород из реакций освобождается:
n H2O + n CO2 = n (CH2O) + n O2, (11)
так как вода H2O в присутствии магниевого катализатора обладает более сильными окислительными свойствами для углерода, чем кислород. Поэтому при фотосинтезе кисло¬род будет освобождаться, а углерод будет как бы раство¬ряться в пропорции (1:1), образуя соединения вида n(CH2O).
Любопытно заметить, что соединение вида n(CH2O) на¬ходится как бы в инверсно населенной системе, т. е. в ре¬жиме накопления энергии. Это значит, что при растворе¬нии углерода в воде с образованием соответствующих кри¬сталлов (рис. 57) образуется высокоэффективное горючее.
Такое вещество (рис. 57) не является нейтральным, так как начало и конец цепи n(CH2O) способны присоединить к себе еще по одной молекуле либо замкнуться в кольцо, либо идти на образование порфировых ядер, хлорофилла, алкалоидов, сахаров, белков, жиров.
При бета-синтезе идет подобный процесс. Однако при нем биомасса будет более подкисленной из-за сильных окислительных процессов.